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Abstract—The preparation of two new indenyl esters 2-(2,4,6-trimethylbenzoyloxy)indene (1) and 2-(adamantanoyloxy)indene (2)
is reported. Both compounds can be deprotonated with alkyllithiums such as n-BuLi and the resulting anions trapped by addition
of TMSCl or iodomethane, rendering them as potential electronically modified cyclopentadienyl ligand analogues for complexa-
tion with transition metals. © 2002 Elsevier Science Ltd. All rights reserved.

Substituted indenes function as versatile ligand precur-
sors for a variety of transition metal complexes.1 In
particular, bridged and unbridged group 4 bis(indenyl)
metallocenes have gained attention as stoichiometric
reagents or catalyst precursors for enantioselective
organic transformations2 and catalytic olefin polymer-
ization.3 The catalytic performance of these complexes
is determined by steric and electronic effects induced by
the ancillary ligand substituents. Although synthetic
methods for preparing 1- (or 3-) and 2-alkyl/aryl substi-
tuted indenyl ligand precursors are well established,4,5

the preparation of heteroatom functionalized indenes
has remained relatively unexplored.6–9 We were inter-
ested in studying the applicability of indenyl esters as
potential electronically modified cyclopentadienyl lig-
ands for transition metal complexes. Herein we report
the simple preparation and spectroscopic characteriza-
tion of two new -OCOR ester substituted indenes,
2-(2,4,6-trimethylbenzoyloxy)indene (1) and 2-(adaman-
tanoyloxy)indene (2). Both compounds can be success-
fully deprotonated with alkyllithiums to generate the
corresponding indenyl anions.

Only a few examples of 2-indenyl esters have been
described in the literature. 2-(Benzoyloxy)indene has
been prepared by reaction of 2-indanone with iodoben-
zene in the presence of CO (40–45 atm), Et3N and
Cl2Pd(PPh3)2 in DMF.10 2-(Acetoxy)indene has been
obtained by reaction of 2-indanone with isopropenyl
acetate11 and as a low yield byproduct of mangane-
se(III) mediated �-lactone annulation of indene.12 In

addition, Gibson et al. have reported the preparation of
the arenetricarbonylchromium(0) complex of 2-(ace-
toxy)indene by deprotonation of tricarbonyl(indan-2-
one) with LDA followed by quenching with acetic
anhydride.13 Based on the available reactivity data,14 we
did not expect these esters to be stable under standard
deprotonation conditions. Thus, sterically more hin-
dered indenyl esters were chosen as targets for the
present study.

Synthesis of the mesitoyl and adamantanoyl esters 1
and 2 are presented in Scheme 1. Reaction of 2-
indanone with an equimolar amount of NaH in THF
generated the corresponding enolate ion15 that was
cooled to −80°C and reacted with 2,4,6-trimethylben-
zoic acid chloride (obtained by chlorination of 2,4,6-
trimethylbenzoic acid with SOCl2) and
adamantane-1-carboxylic acid chloride (Aldrich),
respectively. The reaction mixture was slowly warmed
up to room temperature, quenched by addition of
saturated aqueous ammonium chloride, washed with
water and dried over sodium sulphate. Evaporation of
the solvent and subsequent crystallization from Et2O

Scheme 1. Synthesis of the indenyl esters 1 and 2.
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provided 1 and 2 in 57% and 50% isolated yields,
respectively.16,17

Various conditions were examined for the deprotona-
tion of the new indenyl esters. In a typical experiment,
1 (1.04 g, 3.75 mmol) or 2 (1.10 g, 3.75 mmol) was
dissolved in THF and reacted with an equimolar
amount of n-BuLi (2.5 M solution in hexanes) at −80°C
to generate the corresponding indenyllithium salts. Stir-
ring for 5 minutes and subsequent quenching with
TMSCl gave after work-up and crystallization from
pentane the trimethylsilyl derivatives 3 and 4 in isolated
yields of 69% and 44%, respectively (Scheme 2).18,19 1H
NMR analyses of the crude products were in both cases
consistent with 85–90% conversions of 1 and 2 to the
trimethylsilyl adducts. Alternatively, the indenyl anions
could be trapped by addition of iodomethane and the
corresponding 1- (3-) methyl derivatives identified by
GC/MS analysis.

The analogous method can be applied to the synthesis
of 3-indenyl esters as well.20 Thus, reaction of 1-
indanone with NaH in THF followed by subsequent
addition of 2,4,6-trimethylbenzoic acid chloride at
−80°C gave, after work-up and distillation, 3-(2,4,6-
trimethylbenzoyloxy)indene (5) in 53% yield (Scheme
3).21 Compound 5 was likewise successfully deproto-
nated in THF solution at −80°C using n-BuLi or
tert-BuLi. Quenching with TMSCl gave the trimethyl-
silyl derivative as identified by GC/MS analysis. Other
promising deprotonation conditions for the 2-substi-
tuted esters include NaH/THF/ambient temperature
and n-BuLi/DMF/−80°C.

In summary, we have demonstrated the compatibility
of sterically congested ester substituents with indenyl
derived anions. These new ligand precursors are avail-
able in good yields from commercial starting materials.

As shown in previous reports, electronic modifications
of bis(cyclopentadienyl)22 and bis(indenyl) metallocenes
may significantly influence their catalytic performance
in various applications, including olefin polymeriza-
tion.8d,23 Compounds 1–5 may thus prove to be inter-
esting ligand candidates for structural tailoring of
transition metal as well as alkali metal20 cyclopentadi-
enyl complexes.
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